Marine Renewable Energy:

Enabling Green Marine and Maritime Ecosystems
Towards a Sustainable Blue Economy

Michael Lochinvar S. Abundo, PhD

Managing Director, OceanPixel Pte Ltd (Singapore)

Mobile: +65 9066 3584

Email: mike@oceanpixel.org

OceanPixel

www.oceanpixel.org

Making Marine Renewable Energy a Reality!

OceanPixel is a Singapore start-up company that spun off from the Nanyang Technological University's (NTU) Energy Research Institute. OP is currently engaged in ocean energy projects in Singapore, Indonesia, and the Philippines

Resource assessment

Collects preliminary data via independent surveys, or oversee Licensed Surveyors to collect data for marine energy resource assessment.

Project Intelligence

In-house team of hydrodynamists to carry out quality checks, simulation, processing and analysis of data.

Project management

Provides project management services for project developers, from prefeasibility studies to resource assessments, technoeconomic studies, planning and execution of deployment or installation operations.

Research and **Development**

Manages
performance
assessment
campaigns or plan
and execute tests for
technology
developers. These
tests may be longterm tests at a
specific site, or in
other forms like tow
tests.

Report Product

Produces report products, which informs project developers regarding feasibility of project development in numerous sites of interest.

Makings of Sustainable Marine Ecosystems

Minimal greenhouse gas footprint of various activities in the marine space

Efficient and sustainable use of marine space and resources through improved planning, engineering and operations

Strive for minimal impact on marine environment by human activities

Continued monitoring and regulating of interactions between human activities and the environment

Through What Means?

DECREASE RELIANCE ON FOSSIL FUEL

GREEN ENERGY PRODUCTION

RESOURCE AND WASTE MANAGEMENT

FORWARD THINKING INFRASTRUCTURES AND TECHNOLOGIES

REGULATIONS OF MARINE ACTIVITIES

CONSERVATION AND WILDLIFE PROTECTION AREAS

PROTECTION AGAINST INVASIVE SPECIES

EDUCATION AND INCREASE AWARENESS

Electrification: More than just electricity supply

- Electrification of Transportation
- Electrification of Vessels
- Electrification of Ports
- Automation of Processes
- Energy Storage Systems
- Aquaculture Applications
- Water Production (e.g. Desalination)
- Ice Making
- Others?

Sustainable Integrated Development for Islands & Coasts

Aquaculture & Fisheries

Green Transport – Sea and Land

Green Maritime Ecosystem – Ports, Vessels, Aquaculture, Desalination, Water, Ice/Cooling ++

Renewable Energy + Green Transport

- + Aquaculture + Water Production
- + Freezing/Cooling + Local Content
- + Other Sustainable Initiatives

Marine Renewable Energy

"Renewable energy production which makes use of marine resources or marine space."*

*European Science Foundation

- Offshore Wind
- Floating Solar
- Marine biomass (micro- and macro-algae)

Ocean Renewable Energy

- Currents (Ocean Current, Tidal Currents/In-Stream)
- Tides (Tidal Range)
- Waves
- Salinity / Osmotic Gradient
- Thermal Gradient

Ocean Renewable Energy

5 Ocean Renewable Energy Resources*

Wave energy is produced from the surface motion of ocean waves or from pressure fluctuations below the surface.

 Salinity Gradient power is the available energy (or chemical potential) from the differences in salt concentration between the fresh water and seawater.

2,000 TWh/yr

Marine Renewable Energy:

OceanPixel

Technology Readiness

Very few active concepts being developed; laboratory-scale tank testing has occurred

Deep Ocean Current

Marine Floating Solar

Offshore Wind

Wave Energy Converters

Full-scale prototypes being tested. Many leading WEC designs have remained at this stage for some time

A few test facilities (mostly pilot-scale) trialed, but no long-term operation

Tidal Stream

Leading developers testing individual prototypes in locations representative of potential commercial sites. generating grid-connected electricity. Demonstration in arrays still lacking

Tidal Range

Most mature of the ocean energy technologies, with a proven track record stretching back to the 1960s but limited deployment to date

Salinity Gradient

A handful of university-based research projects have been conducted, as well as small-scale system operation

OTEC

Actual system completed and qualified ready for deployment through test and demonstration

Technology operational, over full range of expected lifetime conditions

Technology Readiness Level (TRL) Basic

principles observed and reported

Technology concept and/or application formulated

Analytical and experimental critical function and/or proof of concept

Technology (system or components) validated in a laboratory experiment

Laboratory scale, with similar system validation in a realistic working environment

Engineering/pilotscale, with prototype system or model demonstrated in an actual working environment

Full scale or prototype technology demonstration in an actual working environment

Source: IRENA

Increasing Maturity

International Energy Agency

RESOURCE	INSTALLED CAPACITY (kW)	CONSENTED PROJECTS (kW)	
Wave Power	CAPACITY (HW)	Up to 20000	NORWAY
	Fall to	64-15-20-20-15-15-15-15-15-15-15-15-15-15-15-15-15-	prenunce

HINA				
RESOURCE	INSTALLED CAPACITY (NW)	CONSENTED PROJECTS (kW)		
Wave Power	350	2860		
Tidal Currents	170	4500		

3900

Tidal Power

INSTALLED CAPACITY (KW)

CONSENTED PROJECTS (kW)

200

REPUBLIC OF KOREA				
RESOURCE	ENSTALLED CAPACITY (kW)	CONSENTED PROJECTS (kW)		
Wave Power	500	300		
Tidal Currents	1000	1300		
Tidal Power	1000	1300		
OTEC	220	1000		

RESOURCE	CAPACITY (KW)	CONSENTED PROJECTS (NW
Wave Power	16	

>1,000 Sites 200MW each

NADA				
RESOURCE	INSTALLED CAPACITY (kW)	CONSENTED PROJECTS (KW)		
Tidal Currents		20450		
		Ŧ		

	RESOURCE
	Wave Power
Ī	Tidal Currents

Salinity Gradient

INSTALLED

3730 5600 PROJECTS (kW) 40000

96000

RESOURCE	CAPACITY (kW)	CONSENTED PROJECTS (KW)
Tidal Currents		20450
Tidal Dower	20000	

INSTALLED CAPACITY (kW)	CONSENTED PROJECTS (kW)
	1365
	1350

TUGAL			1/4
RESOURCE	INSTALLED CAPACITY (kW)	PROJECTS (kW)	
Wave Power	700		12

IN		
RESOURCE	INSTALLED CAPACITY (kW)	CONSENTED PROJECTS (KW)
Wave Power	296	300

MEYGEN ATLANTIS

openhydro a DCNS company

Sustainable Energy - Islands Example

Total = > 5,000 MW deliverable capacity

of electrical demand in Orkney met by renewables in 2014

Developing Countries' Initiatives

Simulation Studies

Brunei
Offshore Wind

Tow Tanks (eg UTM, MMU, NTU)

Myanmar Tidal Barrage

Vietnam
Tidal Turbine Drive Train

Philippines
Tidal Barrage

Indonesia
Tidal Current Test

Malaysia OWC Test

Singapore
Tidal Turbine Testing

Europe, N. America, Australia

Source: SEAcORE 2013

The project has proven the capability of a multi-company team to develop, implement and successfully deploy a tidal turbine in one of the most remote and areas of Indonesia.

The installation of Schottel Hydro's 50kW turbine in West Papua is a significant step on the journey to use marine renewables to de-carbonise energy supplies across the region.

Case Study: Hybrid System for an Island Micro-Grids

Power System Config.	RE Fraction	Excess Electricity	LCOE (USD/kWh)
Diesel GenSets (910, 100 kVA) + Batt (576kWh) + Solar (300kWp) + Tidal (200kWp)	31.6%	12.6%	0.368
Diesel GenSets (910kVA, 100 kVA) + Batt (720kWh) + Solar (600kWp)	38.6%	20.1%	0.386
Diesel GenSets (910kVA, 100 kVA)+Batt.(1440kWh)	0.0 %	2.47%	0.456
Diesel GenSets (2x 910, 500, 100 kVA)	0.0 %	14.5%	0.50

Ocean Energy - Configuration Options

(Tidal In-Stream Energy Device example)

- Jetty-based / fixed structure (e.g. bridges)
- Floating
- Submerged (neutrally-buoyant)
- Seabed-mounted
- Others? Vessel-mounted?

Hybridized Marine RE Pathway

Building the a Sustainable Future Blue Economy

SMEs

Industries

Potential Pilot Projects

Ocean/Marine Renewable Energy, Floating Solar

Energy Systems Integration

Energy Storage

Testbedding Other Innovations **Technologies Business Models** "Learn by Doing"

Transportation

Ports/Marinas/Bays

Ice

Water Production

Key Take Away Points

- Marine Renewable Energy is coming up.
 - Tidal/wave energy are potential options, typically hybrid with solar energy, storage and diesel are the way to go
- Having Market Supports (e.g. Feed-in-Tariff)can accelerate the progress of Marine RE
 - Pilot, Demos, First movers are needed.
- Clean Electricity (from the Ocean) is just one aspect, there are also jobs, industries, and other benefits

Summary / Conclusions / Recommendations

Marine Renewable Energy Options Exist

- Floating Solar, Offshore Wind (can be feasible)
- Waves and Currents, maybe OTEC and Salinity Gradient
- Need for a Resource Inventory Review and Suitability Studies for Pilot Projects

Green Marine and Maritime Ecosystem

- Lower Hanging Fruits Green Vessels, Green Ports
- ► Electrification of a Suite of Applications Transport, Aquaculture, Food, Water
- Detailed planning of a Sustainable Integrated Development for Islands and Coasts

Progressive Development Approach Towards a Blue Economy

- Leverage the Marine/Maritime Ecosystem of the Country/Region(s)
- Capability Development Local Supply Chain (especially Services)
- Demonstration and Pilot Projects can accelerate the uptake
- Hybrid Systems and Co-Application will be key to success

Realising Marine Renewable Energy Opportunities in the Region

Strategic Marine Renewable Energy Resource Assessment

Marine Spatial Planning

Pilot Projects and Demonstrations

Industry
Development
Roadmap

Survey of Current Human and Resource Capabilities

Outreach and Awareness Program

Thank You!

Michael Lochinvar S. Abundo, PhD

Managing Director, OceanPixel Pte Ltd (Singapore)

Mobile: +65 9066 3584

Email: mike@oceanpixel.org

www.oceanpixel.org