Iloilo, 27-30 November 2018

Indonesian Road Map to Marine Energy: Status and Prospective

On: The East Asian Seas Congress, Iloilo Convention Center, Philippines

> BIDANG TEKNOLOGI INDUSTRI RANCANG BANGUN DAN REKAYASA

By: Erwandi

CENTER OF TECHNOLOGY FOR MARITIME INDUSTRIAL ENGINEERING

AGENCY FOR THE ASSESSMENT AND APPLICATION OF TECHNOLOGY

Introduction: National Energy Mix Policy, about BPPT and 2 labs

BPPT Experience on ORE Mapping, Research, Engineering, and Prototyping

BPPT Recommendations: Case Study of UNIDO Project, Tidal Bridge, and Recommendations to Government

3

2

Indonesia dan National Energy Mix Policy

1. The supply energy of many Islands depend on oil and coal.

BIDANG TEKNOLOGI INDUSTRI RANCANG BANGUN DAN REKAYASA

- 2. Price and transportation become the main problem especially for east Indonesia.
- 3. The government policies : the islands should utilize their own local energy resources.
- 4. Need a new concept to develop the local energy resources.
- 5. Government Regulation about Policy of National Energy Mix, (PP no. 79, 2014) and the roadmap of the development of ocean energy resources.

Badar

BIDANG TEKNOLOGI INDUSTRI RANCANG BANGUN DAN REKAYASA

Marine Current at Larantuka Strait

Marine Current Potencies

- Marine current is the source of hydrokinetic energy.
- The current will be accelerated when passing the straits.
- Predictability
- Since 2004 BPPT had assignment for assessing the ORE Technology (Marine Current and Wave)

BPPT Engineering

- Center For Assessment **Of Comptetitiveness** Improvement Policy
- Center Of Technology Audit
- Center For Technology Incubator
- And Disaster Mitigation Technology
- Center Of Environmental Technology
- **Center For Marine Survey**
- Center For Environtmental Technology
- **Center For Weather Modification Technology**

- Technology
- Center Of • Pharmaceutical Ad Medical Technology
- Center For Biotechnology
- Center For Starch • Technology

- **Conservation Technology**
- Center Of Material Technology
- **Center For Design Engineering And Technology System**
- Center For Science And Technology Network
- **Center For Polymer Technology**

Center For Energy Technology

Center For Ceramic And Porcelain Art And Technology Development

- Technology
- Center Of Technology For Manufacturing Industry
- Center Of Technology For Security And Defense Industry
- Center Of Technology For Transportation Industry And **Transportation System**
- Laboratory For Thermodynamics Motor And Propulsion
- Laboratory For Machine • tools Production Techniques And Automation Technology
- National Laboratory For Material • Strength
- Netional Laboratory For Aero-gas **Dynamics And Vibration**

BPPT LABORATORY FACILITY:

LABORATORY OF HYDRODYNAMICS TECHNOLOGY - SURABAYA

• Towing Tank

Length 235.4 m, width 11 m, and depth 5.5 m For testing of ship powering

•Manuveuring & Ocean Engineering basin

Length 105 m, width 36 m deep bas. 2.5 m , shallow bas. 1.5 m. Kolam ini digunakan untuk pengujian manover dan stabilitas kapal

Cavitation Tunnel

Test section length 3 m, width 85 x 85 cm

Badan Pengkajian dan Penerapan Teknologi

Pengujian Power, Stabilitas dan Manoeuver Kapal

BTIPDP

Laboratory of Technology for Ports Infrastructure and Coastal Dynamies

1. Physical Test Laboratory :

- Wave Basin
- Wave Flume

- 2. Numerical/mathematical model simulation:
 - 2D Modelling of Coastal Waters and Seas
 - 3D Modelling of Coastal Waters and Seas

BPPT EXPERIENCES ON OCEAN RENEWABLE ENERGY DEVELOPMENT

ORE Potential site Survey

SPICE-3 Observation

- 1. Wave @ Baron Site and
- 2. Tide Gauge @ Larantuka Str

Methods (2- Ocean Models)

SWAN – *Simulating Wave Nearshore*

Flow Model – 2DDI Hydrodynamic Model (MIKE-21 by DHI)

Baron Site (Wave measurement)

Badan Pengkajian dan Penerapan Teknologi

Swell dominant at f ~ 0.07Hz or T = ~12-13 sec

Larantuka Site (Tide n Met Observation)

Several disturbance on the measurement due to:

- 8 months continuous tide observation
- Shifting the sensor
- Relocation Observation site

Larantuka

Area: ca. 5,800 m²

300 500 Width (m)

Area: ca. 9,600 m²

600

Width (m)

B-B

D-D

51

52

1000

700

Badan Pengkajian dan Penerapan Teknologi

122.97

122.99

123.01

Longitude (deg)

123.03

123.05

-8.37

54

53

BIDANG TEKNOLOGI INDUSTRI

Marine Current energy @ Larantuka

- A good correlation between tide elevation model and observation
- Current speed in 'bottle neck' of the channel > 1 m/sec in mean period of neap and spring tides

Research, Engineering, & Prototyping

OWC BTIPDP

http://www.youtube.com/user/erw4ndi

BPPT Prototype Testing 2011

BPPT, Larantuka

10 kW Prototype Testing at Low Speed Current Suramadu Bridge Pile 56 2013

emban kit Listrik Tenaga Arus Laut UPT - BPPH , BPP

http://www.youtube.com/user/erw4ndi

Twin-Turbine Prototype 10 kW Suramadu Bridge Funded by Balitbang KKP (2014-2015 Development) & Ristek Dikti (2016 Endurance Test)

2016

BPPT RECOMMENDATIONS

Case Study of UNIDO Project

Source : Wörlen and Erwandi, Independent Evaluation Promotion and Transfer of Marine Current Exploitation Technology in China and South East Asia (UNIDO 2015)

In 2008 UNIDO Project ENERMAR (Ponte di Archimede) collaborated with Ministry of Research and Technology, and Walinusa Energi: Kobold Nusa at Alas Strait

Kobold at East Lombok Island

IN PERSON NON PRESIDENT EXPLOSION

Concept of Pancasila Palmerah Tidal Bridge at Larantuka Strait, East Flores Regency

Palmerah Tidal Bridge overview

Basic functions Tidal Bridge

Bridging

- Floating elements
- Main supporting structure
- Possibility for water transport

Connections

- Connection between floating elements
- Able to take axial and radial loads
- Able to take continous movements.

Anchoring

- To keep the floating elements in position
- Able to follow the movements of tide and currents.

Land fall

- Connection between floating elements and fixed structures
- Able to follow movements in height

Produce

- Tidal Energy converters (turbines)

🔘 💽 🎽 者

18

- Electrical system

Need regulation discretion !

Recommendations

1. Long Terms

Development of Maritime Cluster Industries at Sulawesi / Ambon / Kupang

2. Short Terms

Building special ships for transport, erection, and maintenance.

Dr. Erwandi erwandi@bppt.go.id erwandi@gmail.com Mobile: 081334543406