

ENGAGEMENT	PROBLEM DEFINITION	SOLUTIONS	OUTCOMES					
	Aspirations for change	Improving livelihood options (current and new)	Greater employment					
Community	Legal obligations	Review & enhance governance	Greater food security					
Government	Issues & factors driving the system	Improved resource management & planning	Healthier ecosystems					
	Challenges to overcome							
	Opportunities	Scalable behaviour change	Social cohesion					

ENGAGEMENT

PROBLEM DEFINITION

SOLUTIONS

Eco-Biz Challenge

Eco-based Business Development

Rebuilding reef fisheries with core zones toolbox

Reef React

Coastal Protection

Policy brief for seagrass

My Future, My Oceans

Systems dynamic decision making

SESAMME \$

ocio-ecological systems ap for mental model elicitation

Rebuilding reef fisheries with core zones toolbox

FishCollab

My Future, **My Oceans**

Eco-Biz Challenge

Eco-based Business Development

Coastal protection

Dynamic larval dispersal

Reef React

System Simulation

Model

CCRES and the SDGs

	1 NO POVERTY	2 ZERO HUNGER	5 GENDER EQUALITY	8 DECENT WORK AND ECONOMIC GROWTH	12 RESPONSIBLE CONSUMPTION AND PRODUCTION	13 CLIMATE ACTION	14 LIFE BELOW WATER	17 PARTNERSHIPS FOR THE GOALS
Eco-Biz Challenge	✓	✓	✓	✓	✓		✓	
Ecosystem based Business Development (EbBD)	✓	✓	✓	✓	✓		✓	
My Future, My Oceans			✓	✓	✓		✓	
FishCollab	✓				✓		✓	
System Stimulation Model					✓		✓	
SYSTORY					✓		✓	
SESAMME app		✓	✓	✓	✓		✓	
Reef React	✓				✓		✓	
Coastal Protection web tool	✓				✓	✓	✓	
Rebuilding reef fisheries with MPA Toolbox					✓		✓	
CCRES project	✓	✓	✓	✓	✓	✓	✓	✓

Problems and Challenges

- Analyse, model systems, pressures, resources
- Develop businesses that work in harmony with coastal ecosystems
- Encourage government and community collaboration to strengthen governance
- Plan for healthy reefs and sustainable fisheries through more effective MPAs
- Foster sustainable behaviours through promoting and reinforcing benefits, removing barriers

SYSTORY DEMONSTRATION

Experiment allows you to assess scenarios

Solutions

EcoBiz Challenge - Local solutions for local problems

Tatangan Eco-Biz

Apakah Anda punya ide bisnis?

Apakan Anda memiliki ide disinsi yang raman lingkungan dan dapat membuat suatu perubahan? Apakah Anda memiliki gairah tentang terumbu karang, hutan bakau dan ekosistem pesisir lainnya, sambil memiliki gagasan untuk melindungi hal-hal tersebut melalui solusi bisnis? Jika demikian, kami mencari Andal

solusi baru dan inovatif yang dapat mendukung ekosistem pesisir Selayar.

Tantangan Eco-Biz bertujuan untuk mendorong dan mendukung calon pengusaha di Selayar untuk mengembangkan, menerapkan dan menjalankan lide bapati pesatif terbuk hiposetif pangan pekananan lide bapati pesatif terbuk hiposetif pangan pekananan

Tiga finalis akan mendapat hadiah berupa hibah sebesar Rp 15.000.000 masin-masing untuk memulai atu memperluas konsep bisnis mereka. Peserta akan diberkan kesempatan untuk mendapatkan pelatihan kelerampilan bisnis yang berharga selama lokakarya yang disesuaikan.

Marine sanctuary ecotourism

Mangrove ecotourism

Mangrove seedling nursery

Sustainable handicrafts

Homestay/tour operator

Ecofriendly diving tours

Some of the Eco-Biz Challenge Ideas

Plate to garden to plate compost and fertiliser

One Student, One Mangrove

to replace mangrove charcoal

Native nursery to reduce take from forest

Giant bamboo plantation to replace illegally logged timber

Eco-fuel switching for inboard engines

Plastic recycling and upcycling women's cooperative

Global and national solutions for local problems – Indonesia

Global Case Study Repository

Identify those businesses most likely to adopt the opportunities

Capturing Coral Reef and Related Ecosystem
Services Project

Business Development Indonesia (BDI)

DATA COLLECTION

Design Framework and Research Instrument

Selayar

August, 2016

Develop and run the Ecosystem based Business Development workshop.

Purpose: Match national success cases with likely adopters of new opportunities and ecosystem solutions

Solutions

FishCollab toolkit components

Participatory Diagnostic Tool

Solutions

Marine resource management

- 1. Rebuilding reef fisheries toolkit
- 2. Reef vulnerability and projections
- 3. Mapping coastal protection
- 4. Policy brief: importance of seagrass

How much area to protect?

DEGEADOU ADTICI

Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries

Nils C. Krueck^{1,2}*, Gabby N. Ahmadia³, Hugh P. Possingham^{2,4}, Cynthia Riginos², Eric A. Tremi^{2,5}, Peter J. Mumby^{1,2}*

1 Matrine Spatial Ecology Lab and Australian Research Couroll Contre of Excolence for Coral Reed Studies, The University of Queenstand, St. Lucia Campus, Birthane, Queenstand, Australia, 2 School of Biological Sciences, The University of Queenstand, St. Lucia Campus, University, etc., Program, Vereir Muldier Eurol (WRIY), Washington, D. C. United States of America, 4 Australian Research Couroll Centre of Excellence for Environmental Dedizions, The University of Queenstand, St. Lucia Campus, Betwane, Queenstand, Australia, S. School of BioSciences, The University of Medicourus, Medicourus, Victoria,

* nils iruadi @uqconnect.edu.au (NCK); p.i.mumby@uq.edu.au (PJM)

Citation: Krueck NC, Ahmadia GN, Possingham HP, Riginos C, Tremi BJ, Mumby RI (2017) Marine Reserve Targets to Sustain and Rebot Umreguland Risheries. PLoS Biol 15(1): e2000537. doi:10.1371/journal.pbio.2000537

Received: July 11, 2016

OPEN ACCESS

Accepted: November 25, 2016 Published: January 5, 2017

Copyright: 0:2017 Knucket al. This is an open access acticle distributed under the terms of the Contine Commons. Art Evitin License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: Averaged reserve coverage target results are contained in the Supporting Information (<u>S2 Table</u>). Raw results files are available from the Zenodo database (DOE 10.5281 deepool 165.199.

Funding: Australian Research Council Inter/News. arrapo. auf (grant number 1.P (2000049). The work was supported to plan Australian Research Council Unisage Project co-funded by the Weld Walter Fund (Well-Indonesia) (wasned to ISM). EAT, IPP), and CR). The Well-Indonesia (wasned to ISM). EAT, IPP), and CR). The Well-Indonesia for notice in study cleage, datased before and assipple, decked in to publish, or preparation of the manuscopt. World Bank/EEF (Capating Coal Research).

Abstract

Overfishing threatens the sustainability of coastal marine biodiversity, especially intropical developing countries. To counter this problem, about 200 governments worldwide have committed to protecting 10%-20% of national coastal marine areas. However, associated impacts on fisheries productivity are unclear and could weaken the food security of hundreds of millions of people who depend on diverse and largely unregulated fishing activities. Here, we present a systematic theoretic analysis of the ability of reserves to rebuild fisheries under such complex conditions, and we identify maximum reserve coverages for biodiversity conservation that do not impair long-term fisheries productivity. Our analysis assumes that fishers have no viable alternative to fishing, such that total fishing effort remains constant (at best). We find that realistic reserve networks, which protect 10%-30% of fished habitats in 1-20 km wide reserves, should benefit the long-term productivity of almost any complex fishery. We discover a "rule of thumb" to safeguard against the long-term catch depletion of particular species: individual reserves should export 30% or more of locally produced larvae to adjacent fishing grounds. Specifically on coral reefs, where fishers tend to overexploit species whose dispersal distances as larvae exceed the home ranges of adults, decisions on the size of reserves needed to meet the 30% larval export rule are unlikely to compromise the protection of resident adults. Even achieving the modest Aichi Target 11 of 10% "effective protection" can then help rebuild depleted catch. However, strictly protecting 20%-30% of fished habitats is unlikely to diminish catch even if overfishing is not yet a problem while providing greater potential for biodiversity conservation and fishery rebuilding if overfishing is substantial. These findings are important because they suggest that doubling or tripling the only globally enforced marine reserve target will benefit biodiversity conservation and higher fisheries productivity where both are most urgently needed.

Overfishing

PLOS Biology | DOI:10.1371/journal.pbio.2000537 January 5, 2017

1/2

Even 10% core zone helps rebuild fisheries (UN Aichi target)

Size of reserves to be effective?

Downloadable & customisable software tool

Where to protect?

Krueck NC, Ahmadia GN, Green A, Jones GP, Possingham HP, Riginos C, Treml EA, **Mumby PJ** (2017) Incorporating larval dispersal into MPA design for both conservation and fisheries. **Ecological Applications** 27: 925-941

Using dispersal data for MPA design

Retention: Larvae stay at home

Using dispersal data for MPA design

Import: Larvae arrive from other locations

Using dispersal data for MPA design

Export: Larvae leave to other locations

Best MPA network design for Sunda Banda

Reserve design tool to rebuild fisheries

Trained 90+ users so far (another 90 to go)

Training software in reserve design

Reef React

Mapping key protective reefs

Protection of coastal infrastructure

Tools to factor in the importance of reefs in protecting the shoreline especially under sea level rise

Solutions

My Future, My Ocean

Awareness

- Know the problem
- Who benefits from fixing the problem
- What's the issue and how does it affect us?

Positive relationships

- · Positive praise
- · Active listening
- · Showing affection
- Get support and solve problems together

Self-regulation

- Engaging in positive consumer behavior
- · Using teachable moments
- · Setting a golden example
- Starting a conversation

Solving problems

- · Plan ahead to avoid problems
- · Focus on own actions
- · Be flexible and stay calm
- · Review and improve your plan

1 = =

Setting goals

- Come up with many solutions
- · Track your goals
- Set positive and clear goals
- Set realistic goals

Self care

- Positive self-talk
- Do things you enjoy

Systems dynamic decision making

SESAMME \$

ocio-ecological systems ap for mental model elicitation

Rebuilding reef fisheries with core zones toolbox

FishCollab

My Future, **My Oceans**

Eco-Biz Challenge

Eco-based Business Development

Coastal protection

Dynamic larval dispersal

Reef React

System Simulation

SUMME

Group 1: Marine planning

Prof. Carlie Dario and Vera Horigue, University of Philippines Marine Science Institute (UPMSI)

Tools: Marine reserve guidelines toolbox

Group 2: System Analysis

Benjamin Adriano, Jr., (PCSD), and Gianina Decano, Palawan State

University (PSU)

Tools: SESAMME, SYSTORY

CCRES

Group 3: Business

Development

Damian Hine, UQ, and Eva Marie Ponce de Leon, PSU

Tools: Ecosystem-based Business Development (EbBD), Eco-Biz Challenge

Group 4: Behaviour change

Dedi Adhuri, Indonesian Institute of Sciences (LIPI)

Erik Simmons, The University of Queensland (UQ)

Tools: My Future, My Oceans. FishCollab

Participatory Diagnostic Tool

Integration

Parak village, Indonesia

- MPA toolbox
- FishCollab
- My Future, My Oceans
- EbBD-Waste2Enterprise

